
Poster: EasyTrans: Enable Fast Iteration of
Transport Protocol

Jie Zhang∗, Chuan Ma∗, Wei Wang†, Kai Zheng†, Yong Cui∗
Tsinghua University∗, Huawei Technologies†

Abstract—The main iteration goal of transport protocols is
to optimize the performance of specific modules. In this poster,
we propose a framework named EasyTrans, that enables fast
iteration of transport protocol modules. With EasyTrans, de-
velopers can focus on the modules they want to iterate and no
longer need to deal with other unnecessary parts of the transport
protocol. Through different module calling modes, EasyTrans
enables high performance even if the modules use algorithms that
require sophisticated computation such as machine learning. We
implement EasyTrans based on QUIC. Evaluation results show
that the overhead of EasyTrans is slight.

Index Terms—transport protocol, protocol design, extensibility

I. INTRODUCTION

Traditional Internet transports provide two abstractions:
reliable byte stream and best-effort datagram. As the rep-
resentatives of these two abstractions, TCP and UDP have
been the most widely used. However, recently, new protocols
are emerging, inspiring by rapid deployments of continuingly
evolving application. Among these new protocols, the most
successful one is QUIC [1]. QUIC provides rich features and
can update at the same frequency as applications, bringing
new opportunities for the extensibility and performance op-
timization of the transport protocol. PQUIC [2], leveraging
the features of QUIC, proposes a new extensible model,
which enables clients and servers to dynamically exchange
plugins that extend the protocol on a per-connection basis.
However, PQUIC is plagued by the complexity of use and
low performance. For example, leveraging PQUIC to add FEC
involves modification from 51 code anchors and causes the
achieved goodput reduced by half. Inspired by the following
observations, we believe it is necessary and possible to design
a framework that enables easier development and maintains
good performance.

First, the optimization of performance is the most frequent
iteration in the protocol, and it often involves specific modules
such as congestion control, stream scheduling. The optimiza-
tion of the protocol mechanism, such as the optimizing of
the connection establishment process, although it is very
important, is not frequent.

Second, in a single project, each researcher or developer
often only needs to optimize one or several specific modules.
However, due to the tightly coupled implementation of the

This work was supported in part by the National Key R&D Program of
China (No.2018YFB1800300).

Application Underlying Protocol
(e.g. UDP, IP)

Module 1

EasyTrans

ev
en

ts

d
ec

is
io

ns

Module 2

ev
en

ts

d
ec

is
io

ns

… Module N

ev
en

ts

d
ec

is
io

ns

Modular QUIC

Fig. 1. EasyTrans Architecture.

protocols, they usually have to understand much more doc-
uments and codes, which is difficult and unnecessary. Some
work is devoted to alleviating this pain. For example, CCP [3]
decouples congestion control from protocols and allows de-
velopers to write algorithms in user-space with consistent and
easy-to-use interfaces.

Third, compared with flexibility, developers are generally
more sensitive to performance of the transport protocols.
Solutions that affect performance are unlikely to be adopted.
Multi-process schemes such as CCP and complex single-
thread schemes such as PQUIC often induce considerable
performance problems.

In this poster, we propose a framework, EasyTrans, which
enables modular development of transport protocol while
inducing slightly overhead. EasyTrans is less flexible than ex-
tensible frameworks like PQUIC—users of EasyTrans cannot
define new modules unless they directly modify the system
implementation. However, EasTrans is much more easy-to-use
because users can focus on the iteration of specific modules
without caring about other parts.

II. DESIGN

Figure 1 shows the architecture of the EasyTrans. EasyTrans
is composed of Modular QUIC and Modules. The Modules are
several protocol modules that require frequent iteration. They
interact with Modular QUIC in runtime. To enable fast itera-
tion of Modules, EasyTrans provides developers with complete
interface for implementation and iteration of Modules. For
each module, we first determine the events that are highly
related to its performance, and then trigger a processing call
when these events happen in Modular QUIC. Modules and
Modular QUIC can be iterated separately.

All Modules and Modular QUIC runs in an user-space
process, thus not induce context switch or inter-process com-
munication. We carefully tuned the calling of modules for978-1-6654-4131-5/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
Pr

ot
oc

ol
s (

IC
N

P)
 |

97
8-

1-
66

54
-4

13
1-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

N
P5

24
44

.2
02

1.
96

51
91

0

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 06:17:26 UTC from IEEE Xplore. Restrictions apply.

Time(ms)

Module
Calling

Events

Per-event

N-event(N=2)

Periodic(T=10ms)

Unperiodic

0 3 8 11 13 15

Event E Calling to Module M

Fig. 2. An example of events processing modes.

performance. EasyTrans provides both blocking modes (Per-
event, N-event) and non-blocking modes (Periodic, Unperi-
odic) to process the events. The Modules with a small amount
of computation should use blocking modes thus run in the
same thread of Modular QUIC. The Modules that require a lot
of computation should use non-blocking modes to open their
own threads, and benefiting from the multi-core. EasyTrans
provide a ChangeMode method before every event process
trigger. Developers can use this method to custom the call
mode.

Figure 2 shows an example of these modes. During this
period of time, there are 6 events E occur that need to
be processed by module M, which occurred at the 0th ms,
3ms, 8ms, 11ms, 13ms, 15ms. M does not require much
computation and can be completed immediately after every
call. Examples of the four modes are as follows. (1) Per-
event mode: Every time an event E occurs, M will be called
immediately for processing. (2) N-event mode: When an event
E occurs for the first time, M is called immediately. Each
subsequent time an event E occurs, the Modular QUIC checks
the number of events accumulated since the last call, and calls
M for every Nth event. (3) Periodic mode: When E occurs for
the first time, M is called immediately. Each subsequent time
an E occurs, the Modular QUIC call the M if the time interval
since the last call has exceed T. (4) Unperiodic mode: Every
time an event E occurs, Modular QUIC will call the M while
there is no running M. Unperiodic and Per-event are similar in
this example because the M can be completed quickly enough.

III. IMPLEMENTATION AND PRELIMINARY RESULTS

We develop a prototype of EasyTrans based on a RUST
implementation [4] of QUIC. The prototype consists of the
Modular QUIC and two Modules (congestion control Module
and stream scheduling Module). We set the congestion control
Module as Unperiodic mode defaultly. Evaluation shows it
works well both with the ACK-clocked algorithms or learning-
based algorithms. We set the stream scheduling Module as
Per-event mode to enable scheduling before each packet sent.

We evaluate the prototype using Linux 5.11.0 on a machine
with four 3.4 Ghz cores and 8 GB memory. Table I shows

TABLE I
ACHIEVED LOOPBACK GOODPUT OF DIFFERENT CALLING MODES

Modules Calling Modes Goodput(Gbps)
No module - 1.895

Congestion control (a) and
stream scheduling (b)

a: Unperiodic
b: Per-event 1.799

a and b a: Periodic (T=10ms)
b: Per-event 1.790

a and b a: Per-event
b: Per-event 1.786

the achieved single-core goodput over a loopback interface.
The goodput of EasyTrans reduced about 5% if the modules
are invoked. When we changed the calling modes of the con-
gestion control module, EasyTrans achieved almost identical
goodput.

An earlier version of the prototype was used in the final
stage of a competition to optimize deadline requirements of
data delivery. Twenty teams entered the final. We provided
them with a docker environment [5] for development and
testing. Using the interface we provided, they all implemented
their congestion control and scheduling algorithms without
reading code of the Modular QUIC. When the algorithms
are the same, there is no significant difference in the scores
obtained by the implementation using EasyTrans and the
implementation directly modified in the integrated system.

IV. FUTURE WORK

There are other parts that have significant impact on the
performance of the transport protocol, such as ACK [6] and
multi-path [7]. We will implement these as Modules to enable
fast iteration of transport protocol. We also plan to carry out
an extensive evaluation to explore the behavior of EasyTrans.

REFERENCES

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM
’17, 2017, pp. 183–196.

[2] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure, “Pluginizing quic,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’19, 2019.

[3] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana, R. Mittal,
M. Alizadeh, and H. Balakrishnan, “Restructuring endpoint congestion
control,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’18, 2018, pp. 30–43.

[4] A. Ghedini. (2021) Savoury implementation of the quic transport protocol
and http/3. [Online]. Available: https://github.com/cloudflare/quiche

[5] (2020) docker image of the second aitrans competition. [Online].
Available: https://hub.docker.com/r/aitrans/aitrans2

[6] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Tack: Improving wireless transport performance by taming
acknowledgments,” in Proceedings of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’20, 2020, pp. 15–30.

[7] Z. Zheng, Y. Ma, Y. Liu, F. Yang, Z. Li, Y. Zhang, J. Zhang, W. Shi,
W. Chen, D. Li et al., “Xlink: Qoe-driven multi-path quic transport in
large-scale video services,” in Proceedings of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’21, 2021, pp. 418–432.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 06:17:26 UTC from IEEE Xplore. Restrictions apply.

